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A BEAM ON A WIEGHARDT-TYPE ELASTIC FOUNDATION

A. YUNEN and M. MIKKOLA

Department of Civil Engineering, Technical University, Helsinki, Finland

Abstract-It is assumed that the differential equation of the deflexion curve of the beam (6), in which the effect
of shear on the curvature of the beam has been taken into account, is valid for a beam on an elastic foundation.
According to Wieghardt, the relationship (4) with kernel function (5) is assumed between the deflexion and the
foundation pressure. On the basis of these assumptions, the differential equation of deflexion curve (14) is then
obtained. This differential equation has been employed in examination of two cases of loading a beam of finite
length. The corresponding results for an infinitely long beam are also derived.

NOTATION

A
B 1 ,B2 ,B3 ,B4

C
E
F
G
I
M
N"N 2 ,N3

Q
R, Ro, R I , R 2

a,b,d
c
k
I
p
q
t'

x,y
rx, p. y, 0, e
Po
x

cross-sectional area of the beam
integration constants
modulus of foundation according to equation (1)
modulus of elasticity
force
modulus of rigidity
moment of inertia of the cross-section
bending moment
abbreviations according to equations (32), (34) and (36)
shear force
concentrated foundation pressures
abbreviations according to equation (13)
constant in the kernel function (5)
constant in the kernel function (5)
length of the beam
foundation pressure per unit length
continuous load per unit length
deflexion of the beam and/or of the foundation
co-ordinates
notations according to equations (17), (19) and (21)
abbreviation according to equation (13)
coefficient in equation (6)

1. INTRODUCTION

CONSIDERATION is given here to a prismatic beam lying on an elastic isotropic foundation
(Fig. 1). Right-angled co-ordinate axes are chosen so that the x-axis coincides with the
axis of the unloaded beam, The positive direction of the deflexion v(x) is downwards, and
it is assumed that the deflexion of the axis of the beam equals the deflexion of the founda
tion. The continuous loading which affects the upper surface of the beam per unit length is
denoted by q(x) and the pressure per unit length produced by the lower surface of the beam
on the foundation is denoted by p(x). It is assumed that the beam remains on the foundation
for its whole length and the horizontal forces which appear on the contacting surface of
the beam and the foundation are ignored. As a rule it is assumed, in accord with Winkler [1]
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and Zimmermann [2], that the foundation pressure is proportional, at every point, to the
deflexion at the same point, or that

p(x) = Cv(x). (1)

The modulus of foundation C has the dimension of the modulus of elasticity. Regarding
the other relationship connecting the unknown functions p(x) and v(x), Winkler takes
into account the differential equation of the deflexion curve of the beam in the engineering
theory of bending

d 4 v(x)
El dx4 =q(x)-p(x) (2)

where E is the modulus ofelasticity of the material of the beam and 1 the moment of inertia
of the cross-section of the beam. From equations (1) and (2), follows the differential equa
tion of the deflexion curve of the beam on an elastic foundation

d4 v(x)
El dx4 +Cv(x) = q(x). (3)

! ~q(x)

7r~~._-~ .. )J:;x:

~
y I \ p(x)

FIG. I

This elementary theory by Winkler has been subjected to severe criticism by Wieghardt
[3] as regards both assumption (1) and the use of differential equation (2). He remarks
that hypothesis (1) is defective, not by reason of the proportionality between the pressure
and deflexion, which can be considered valid at small deflexions, but because the deflexion
at one point depends only upon the pressure at that point, and not at all upon the pressure
in the surroundings of the point. The inaccuracy of hypothesis (1) is most clearly revealed
at the ends ofa finite beam, where according to equation (1) the foundation surface deflexion
becomes discontinuous, which is in contradiction to observations made.

Wieghardt replaces the hypothesis by a more rational one

v(x) = J, K(lx - Wp(~) d~ (4)

where the integration has to be taken over the length of beam t. As the kernel function
K(lx - W, Wieghardt chooses the exponential function

K(lx-W = ce-klx-~I (5)

chiefly with a view to avoiding mathematical difficulties, and according to the tests made
by Foppl [4], it describes, approximately, the distribution of the pressure in the soil. The
constants c and k depend upon the properties of the foundation.

Schiel [5J has pointed out that a mechanical model of the foundation, characterized
by the kernel function (5), is a heavy liquid with surface tension. He has examined a beam
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resting on the surface of such a liquid, and has also arrived at an exponential kernel func
tion. From the surface tension, it follows that if the curve which represents a section of the
surface has a vertex, i.e. the slope of the curve has a point of discontinuity, a concentrated
pressure appears. Wieghardt states that the foundation pressure should be a continuous
function and cannot accept concentrated pressures. He implies that these irregularities are
caused by the inaccuracy of the differential equation (2) and endeavours to avoid the
contradiction, rejecting differential equation (2), and employing the Airy stress-function.

In the following it is accepted the appearance of concentrated foundation pressures
at points where the slope of the curve which represents the surface of the foundation has a
point of discontinuity, and it is considered that this property arises from the characteristic
of the foundation, determined by the kernel function (5).

We also regard the differential equation of the deflexion curve of the beam as valid,
but in a form such that the effect of the shear stresses on the curvature of the beam has
been taken into account r6-91

d2 v M x dQ
dx2 = - £1 +GA dx' (6)

In equation (6), M and Q are, respectively, the bending moment and the shear force of the
beam, G is the modulus of rigidity of the material of the beam, A the area of the cross
section of the beam, x a numerical coefficient the value of which depends on the form of
the cross-section and on Poisson's ratio of the material of the beam.

Equation (4) includes the elementary hypothesis (I) as a special case, as is observable
on taking for the kernel function

I
K(lx-W = Cb(lx- W

where b is the Dirac delta-function defined by equations b(t) = 0, t "# 0, and f~: b(t) dt = 1.
With reference to the exponential kernel function (5), it can be shown that we must have

k-=c
2c

when k --+ 00

if correspondence is to be achieved between the coefficients in assumptions (I) and (5).

2. DIFFERENTIAL EQUATION OF THE DEFLECTION CURVE
OF THE BEAM

It is supposed that the beam is subjected to a distributed load q(x) and a single concen
trated force F (Fig. 2), and the origin of the co-ordinate axes is taken to be at the point of
application of the force.

From the expression of the curvature of the beam (6), it can be deduced that the slope
of the deflexion curve has the same points of discontinuity as shear force Q of the beam,
and consequently the points of application of concentrated loads. It can also be expected
that at the ends ofthe beam the deflexion curve has vertices, thus giving rise to concentrated
foundation pressures.
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yI
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y

FIG. 2

Thus the expression of the deflexion curve of the beam in Fig. 2 can be presented in the
form

f x f'2v(x) = c e-k(X-~)p(e)de+c e-k(~-X)P(e)de+cRI e-k(x+ld
-I, x

+ cRo e- k1xl +cR2 e- k(l2- X) (-I I ~ x ~ 12) (7)

where R I , R2 and Roare the concentrated foundation pressures at the ends of the beam and
at the origin. Outside the beam, the deflexion curve of the surface is, say for x ~ 12

If expression (7) is differentiated twice, then

and

(8)

(9)

~.:~ = -2Ckp(x)+ck2(" e-k(X-~)P(e)de+ck2(e-k(~-X)p(e)de+ck2RIe-k(xt.ld

(10)

From equations (7) and (10), it is found that

1 d 2 v k
p(x) = - 2ck dx2 +2/(x). (11)
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Then, from the well-known relations

621

dM = Q
dx '

dQ = -[q(x)-p(x)]
dx

and the expression of curvature of the beam (6) is derived the differential equation for the
deflexion curve of the beam

(
X )d

4
V 1 ( XElk

2
)d

2
V k xEld

2
q

El 1+2ckGA dx4 - 2ck 1+GT dx2 +2c v(x) = q - GA dx2' (12)

For the sake of brevity, the following notations are introduced

x xElk
2

[k J*
b = 2ckGA' d = GA' f30 = 8cEl(l +b)

(13)
(1 +d)/2ckEl(1 +b)

a = -----c:--,----'------,---;-

2[k/2cEl(1 +b)]t

on the basis of which equation (12) acquires the form

d4 v d2v 1
dx4 - 4af3~ dx2+4f3riv(x) = El(1 +b) q(x)

X d2q
GA(l +b) dx2 '

(14)

Differential equation (14) is valid in all intervals where q and p are continuous functions
to their derivatives of the second-order. Its general solution is the sum of the solution of
the corresponding homogeneous differential equation and a particular solution.

First, there is formulated the solution of the homogeneous differential equation

(15)

The solution assumes different forms, dependent upon whether the non-negative quantity a
is < 1, > 1 or = 1.

(i) When a < 1, then

v(x) = B1 e«X cos f3x +B2 e«X sin f3x +B3 e-«X cos f3x +B4 e-«X sin f3x (16)

where oc and f3 denote

oc = f3oJ(1 + a), f3 = f3oJ(I- a). (17)

(ii) In the case a > 1, all the roots are real, and the solution

v(x) = B 1 eYX +B2 e- YX +B3 ebx +B4 e- bx

is obtained.
Here, y and {) denote the expressions

(18)

y = f3o(J2)J[a+J(a2 -1)],

(iii) In the last case, a = 1, the solution is

(19)

(20)
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where 8 denotes
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(21)

According to the order of differential equation (15), there are four integration constants
in solutions (16), (18) and (20) to be determined on the basis of the boundary conditions
of the beam. Boundary conditions are specifications concerning the deflexion, the slope of
the deflexion curve, the bending moment or the shear force of the beam. For this pur
pose, the general expressions of the bending moment and the shear force of the beam will
be introduced. From equation (6) it follows, on the application of notation (13) and the
expression of p(x) (11), that

dZv xE/
M(x) = -E/(1 +b)dx z+E/kzbv(x)- GA q(x) (22)

and differentiating (22)

d3 v z dv xE/ dq
Q(x) = -E/(1 +b)-+E/k b----.

dx3 dx GA dx
(23)

Further to the boundary conditions, certain conditions are needed for determination
of the concentrated foundation pressures. By utilizing formula (9), at the point of applica
tion of the single load F, there is obtained

(24)

where [dv/dx]x= + 0 and [dv/dx]x = _ 0 are the values of the slope when x tends to zero from
the right and from the left, respectively. On the other hand, from the expression of the
curvature of the beam (6) it is found that

[
dVJ [dV] x- - - = -[Q( +O)-Q( -0)]
dx x= +0 dx_ x= -0 GA

(25)

and, if the relations Q( +O)-Q( -0) = -(F - Ro)and b = x/2ckGA are taken into account,
then

b
Ro = --F.

l+b
(26)

(27)

At the right-end of the beam, on application of the first derivative of expression (8) and
equation (9),

[ dvj [dVJ- - - = -2ckRz
dx X=/2+ 0 dx X=/2-0

and, on comparison of [dv/dx]x=12+0 with deflection v(lz), according to formula (7), finally,

[::1=1,-0 +kv(lz) = 2ckRz·
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Similarly, at the left-end of the beam, there is obtained

[dvl -kv(-ll) = -2ckR 1•

d;Jx= -11 +0

3. SPECIAL CASES OF LOADING OF BEAMS OF FINITE LENGTH

623

(28)

Below, there are solved two simple loading cases of beams of finite length, viz. a
uniformly distributed load on the beam and a concentrated force at the middle of the
beam.

3.1 Uniformly distributed load

The origin of co-ordinates at the middle of the beam is taken (Fig. 3). By reason of
symmetry, only the positive branch of the beam is considered. First, the boundary con
ditions which impose the integration constants and the concentrated foundation pressure
at the end of the beam will be established.

FlO. 3

It follows from symmetry that the slope of the deflexion curve and the shear force are
to be zero at the origin. At the free-end of the beam, the bending moment disappears, and
the shear force has the value - R, the concentrated foundation pressure according to
condition (27). The desired conditions are accordingly

Q(O) = 0

M(l) = 0

Q(l) = -R

[::1=1 +kv(l) = 2ckR

A particular solution of differential equation (14) is

2c
Vo =Tq

(29)

(30)

in which q is the intensity of the uniformly distributed load. The solution of the homo
geneous differential equation (15) has the form (16), (18) or (20), dependent upon the value
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of parameter a. The procedure of determination of the integration constants is routine,
hence its details are omitted, and only the final results are given.

The equations are valid for 0 ~ x ~ I.
3.1.1 Case a < 1.

2c 8R{Joc(1 +b){d-I . .
v(x) = T q + kN

I
d+ la[cosh alsmh ax sm{J(l-x)

+ sin {Jlcos (Jx sinh a(l-x)] -J(I-a2)[cosh al cosh ax cos (J(l-x)

- sin {Jl sin {Jx cosh a(l- X)]}.

M(x) = {J2R [cosh al sinh ax sin (J(l- x) + sin {Jl cos (Jx sinh a(l- x)].
oN}

Q(x) = - 2R {J(I-a)[cosh alsinh ax cos {J(l-x)+sin {Jl sin (Jx sinh a(l-x)]
N}

+JO + a)[sin {Jl cos {Jx cosh a(l-x)-cosh al cosh ax sin {J(l- x)]}.

p(x) = q - 4R{Jo {Jo- a2 )[cosh al cosh ax cos (J(l- x) - sin {Jl sin (Jx cosh a(l- x)]
N l

- a[cosh al sinh ax sin {J(l- x) + sin {Jl cos {Jx sinh a(l-x)]}.

R = q Ik{1 + 2{J~~7b
)[J(I- a2)(cosh 2al +cos 2{J1) +

+~o (I + 1
2
:d)Jo-a) sinh 2al- ~o (1_12:~)J(I +a) sin 2{J1]}.

Factor N 1 denotes

N} = JO-a)sinh2al+J(1+a)sin2{J1.

3.1.2 Case a > 1.

2c 4R{Joc(1 +b) [ (d-I )
v(x)=Tq + kN

2
- d+la+J(a2-1) coshe5lcoshyx

+(~~ ~a-J(a2_1)) cosh YICOShe5X].

R
M(x) = -{J- (-cosh e5l cosh yx+cosh yl cosh e5x).

oN2

(31)

(32)

Q(x) = - (J2)R [J[a + J(a2-1)] cosh e51 sinh yx - J[a - J(a 2 -I)] cosh yl sinh e5x] (33)
N2

2R{J
p(x) = q 0 [(a+ J(a2-I» cosh e5l cosh yx -(a- J(a 2 -I» cosh yl cosh e5x].

N2
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R = q/k{l+ 2P~~7bl2J(a2 -1)COSh yl cosh <51

+ ~o (d-1 a+ J(a2 -1)) J[a+ J(a2 -l)](sinh (y +<5)1 + sinh (y-<5)I)
'12k d+ 1

- ;~k(~~~a- J(a2 -1)) J[a- J(a2 -l)](sinh (y + <5)I-sinh (y -<5)I]}

Factor N 2 denotes

N 2 = J(a-1) sinh (y +<5)1 + J(a+ 1) sinh (y - <5)1.

3.1.3 Case a = 1.

2e 4(J2)RP e(l +b) [( d-1.)
vex) = k q+ k;3 -2coshel+ d+1elsmhel coshex

d-1 J- d + 1 ex cosh el sinh ex .

M(x) = (pJ2)R (I'I sinh el cosh ex - ex cosh el sinh ex).
oN3

Q(x) = - 2R [(cosh el- 1'1 sinh 1'1) sinh ex + ex cosh el cosh el].
N3

p(x) = q- 2(J2)RPo[(2 cosh el-el sinh el) cosh ex+ex cosh el sinh ex].
N3

R = q/k{l+ 2P~~:b)[(J2)(COSh2el+1)

\ Po ( ( d-1) d-1 )]}
i +k 2+ d+ 1 sinh 21'1+ d+ 12el .

Factor N 3 denotes

N3 = sinh 21'1 + 2el.

625

(34)

(35)

(36)

3.2 Coneentratedforee at the middle of the beam
The origin of the co-ordinates is taken at the point of application of the load F, i.e. at

the middle of the beam (Fig. 4). By reason of symmetry, it follows that only the positive
part of the beam needs consideration. Again, there must first be found the appropriate
boundary conditions for determination of the integration constants, and concentrated
foundation pressures Ro at the point of application of load F and R at the end of the beam.

FIG. 4
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With the occurring symmetry taken into account and by making use of formula (25),
there are obtained

[dV] = _ x(F -Ro)
dx x=o 2GA

1
Q(O) = -"2(F-Ro).

At the free end of the beam, it readily follows that

M(l) = 0

Q(l) = -R.

(37')

(37")

Foundation pressures Ro and R are defined on the basis of formulae (26) and (27) by

b
Ro =--F

l+b

[~~1= I + kv(l) = 2ckR

(37"')

The integration constants B1 , B2 , B3 and B4 in expressions (16), (18)or (20) will be deter
mined from conditions (37') and (37"). If there is taken into account the value of
Ro = Fb/(I +b), these constants are still dependent upon foundation pressure R at the
end of the beam. The value of R follows from condition (37"'). On proceeding in this way,
and omitting the uninteresting computations, the following results are obtained.

3.2.1 Case a < 1.

FPOC{( 2ad)j(l-a) . .v(x) = kN
l

1+I+a l+a [coshcdcosh(X(l-x)+smhcdsmh(X(l-x)]cosPx

+ (1 - 2ad )[cosh (Xl sinh (X(l- x) +sinh (Xl cosh (X(l- x)] sin px
l+d

+ (1-1
2
:

d
d) j(~ ~:) [cos Pl cos P(l- x) -sin Pl sin P(l-x)] cosh (Xx

- (1 + 2a~) [cos Pl sin P(l- x)+ sin Pl cos P(l-x)] sinh (Xx
l+d

2 ( 2a
2

) h P 4a. h . P+"j(I-a2 ) 1-I+d cos (Xxcos x-1+dsm (Xxsm x

+8(~) (I +b{(~ ~ ~a sinh (Xl sin Pl- "j(I-a2 )cosh (Xl cos Pl) cosh (Xx cos px

- (~~ ~a cosh (Xl cosPl +.J(l- a2
) sinh (Xl sin Pl) sinh (Xx sin pxJ}.
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M(x) = (F b) {~(1-a) [cosh !XI cosh !X(l- x) + sinh (XI sinh !X(/- x)] cos f3x
4f30 1+ N l V11+a

- (cosh !XI sinh (X(/ - x) + sinh (XI cosh !X(/ - x)J sin f3x

-J(~ ~ :)[cos f31 cos f3(/- x) - sin f31 sin f3(l- x)] cosh (Xx

- [cos f31 sin f3(l- x) + sin f31 cos f3(l- x)] sinh !Xx

+ J(1
2
: a2)cosh (Xx cos f3x + 2 sinh !Xx sin f3x

+ s( ~)(1 + b)[cosh (XI sin f3(l- x) sinh !Xx + sin f31 sinh (X(l- x) cos f3X]}-

Q(x) = 2(1 :b)N 1 { J(l
a
+ a) [cosh !XI cosh !X(l- x) + sinh !XI sinh !X(/- x)] sin f3x

+ J(I- a)[cosh !XI sinh !X(l- x) + sinh !XI cosh !X(l- x)] cos f3x

+ J a [cos f31 cos f3(l- x)- sin f31 sin f3(I- x)]sinh!Xx
(I-a)

+ J (1 + a)[cos f31 sin f3(l- x) + sin f31 cos f3(l- x)] cosh (Xx

J(/- a) sinh !Xx cos f3x J(/+ a) cosh !Xx sin f3x

+4(;) (1 +b)[(J(I-a)cosh (XI cos f31-J(1 +a) sinh (XI sin (31) sinh !Xx cos f3x

+(J(1 +a) cosh !XI cos f31+J(I-a)sinh!XI sin (31)cosh!Xx sin f3X]}

p(x) = 2(1%~N 1{(1 + 2a)j(~ : :)[cosh !XI cosh !X(l- x) + sinh !XI sinh !X(/- x)] cos f3x

+ (1- 2a)[cosh !XI sinh !X(l- x)+ sinh !XI cosh !X(/- x)] sin f3x

+(1- 2a)j(~~ :)[COS f31 cos f3(l- x)- sin f31 sin f3(l- x)] cosh (Xx

- (1 + 2a)[cos f31 sin f3(/- x) + sin f31 cos f3(/- x)] sinh (Xx

2
+ J(l- a2 ) cosh !Xx cos f3x

+ s(~ )(1 + b) [(a sinh IXI sin f31- J(I- a2)cosh IXI cos (3/) cosh !Xx cos f3x

-(a cosh IXI cos f31+.j(I-a2) sinh !XI sin (31)sinh IXX sin f3X]}.

R = 2Ff30(H +f3oH ) [1+ 2f3o(1+b)(H +f3oH \ll
kN l 1 k 3 kN

l
2 k 4U .

627
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The abbreviations are
HI = .j(l- a2) cosh ct] cos 131- a sinh ctl sin 131.

H 2 = .j(l-a2)(cosh 2ctl+cos 2131).

H3 = .jO-a)sinhctlcosf3l-.j(1 +a)coshctlsin 131.

(
2ad ) . (2ad }H4 = 1+
1

+
d

.j(l-a)smh2al- 1-
1

+
d

.j(l +a)sin 2 131.

3.2.2 Case a > 1.

Ff30c S,(d-1 2) [ (2a-1 2a+1 \ J
v(x) = (.j2)kN

2
l d+1a+.j(a -1) - .j(a-1) .j(a+1)f\I[a+.j(a

2
-1)]coshyx

(
2a-1 2a+l)

+ .j(a -1)+ .j(a+ 1) .j[a- .j(a
2
-1)] cosh l51 cosh y(1- x)

(
2a-1 2a+ 1 ) . J

- .j(a-1)+ .j(a+1) (.j[a-.j(a
2

1)])3smhl51sinhy(l-x~

(
d - 1 2) [ ( 2a - 1 2a +1 )

+ d+la-J(a -1) - .j(a-1/ .j(a+1) J[a-J(a
2

-1)]coshl5x

(
2a-1 2a+1)

+ .j(a-1) J(a+1) J[a+J(a
2

-1)]coshylcoshl5(I-x)

(
2a - 1 2a + 1 ) ~

- J(a-1) J(a+ 1) (.j[a+.j(a
2

_1)])3 sin yl sinh J(l-x)~

+4(.j2)(~)(l +b) [-( ~~ ~a+ .j(a
2-1)) cosh l51 cosh yx

+(~~~a-.j(a2_1))cosh yl cosh l5x]}

M x = F [_(~=-!- 2a+1) 2
() 4(J2)f3o(l+b)N2 .j(a-l) .j(a+1) .j[a+.j(a -1)]coshyx

(
2a-l 2a+l)

+ .j(a-1/ .j(a+1) .j[a-.j(a
2

-1)] cosh l5lcosh y(1-x)

(
2a-1 2a+1)

- .j(a -1)+ .j(a+ 1) (.j[a - .j(a
2

_1)])3 sinh l51 sinh y(l- x)

(
2a-l 2a+l).j I 2

- .j(a-1)+ .j(a+ 1) [a-~(a -1)] cosh l5x

(
2a-1 2a+ 1 )

+ .j(a-1) .j(a+l) .j[a+.j(a
2

-1)]coshylcoshl5(l-x)

(
2a-l 2a+l)

- .j(a-1) .j(a+l) (.j[a+.j(a
2

-l)])3 sinhylsinhl5(l-x)

+4(.j2)(~)(1+b)( -cosh t5l cosh yx+cosh yl cosh bX~'

(39)
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Q(x) = - 4(1:b)NJ(~-=-11) J~:II))[a+J(a2-1)]SinhYX

(
2a-l 2a+l )

+ J(a-l)+ J(a+l) cosht5lsinhy(l-x)

(
2a-l 2a+l)

- J(a-l)+ J(a+l) [a-J(a
2
-1)] sinh <5lcosh y(l-x)

(
2a-l 2a+ 1 ) 2 •

+ J(a-l) + J(a+ 1) [a-J(a -1)] smh bx

(
2a-l 2a+l)

+ J(a-l) J(a+l) coshylsinh<5(l-x)

(
2a-l 2a+l)

- J(a-l) J(a+l) [(a+J(a
2
-1)]sinhylcoshb(l-X)

+4(J2)(~)(l +b)(J[a+J(a2-1)] cosh bl sinh yx

-J[a-J(a2-1)]COshYlsinhbX)] .

p(x) = FfJo {_( 2a-l 2a+l) 2 3
2(J2)(1 +b)N2 J(a-l) J(a+ 1) (J[a+J(a -1)]) cosh yx

(
2a-l 2a+ 1 )

+ J(a-l/ J(a+ 1) J[a+J(a
2

1)] cosh bl cosh y(l-x)

(
2a-l 2a+l) 2"

- J(a-l) +J(a+ 1) J[a-J(a -1)] smh bl smh y(l-x)

(
2a-l 2a+l)J 2 3

- J(a-l) +J(a+ 1) ([a-J(a 1)J) cosh bX

(
2a-l 2a+l) 2

+ J(a-l) J(a+l) J[a-J(a -1)]coshylcoshb(l-x)

(
2a-12a+l) 2"

- J(a-l) J(a+ 1) J[a+J(a -1)] smh yl smh<5(l-x)

+4(J2) (~)(1+b)[ -(a+J(a2-1))cosh bl cosh yx

+(a-J(a2-l))cosh yl cosh bXJ}.

R = FfJoJ(a
2
-1)((J2)H +2fJo H) [1+ 2fJo(1+b)(H +~HW1

2kN2 1 k 3 kN2 2 (J2)k 4U .
Here the abbreviations are

(
2a-l 2a+l)

H 1 = - J(a-l) J(a+l) J[a+J(a
2

-1)]coshyl

629
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Q(x) =

(
2a - 1 2a + 1 )J 2

+ .J(a-l) + .J(a+l) [a-.J(a -1)]coshM

H 2 = 2.J(a 2 -1) cosh yl cosh 151

(
2a - 1 2a + 1 ) .

H 3 = - .J(a-1) .J(a+1) [a+.J(a
2
-l)]smhyl

(
2a - 1 2a + 1 ) / 2 •

+ .J(a-1)+ .J(a+1) [a-,,(a -1)]smhJI

(
d-1 )H4 = d + 1a+ .J(a2 -1) .J[a +.J(a2 -1)][sinh(y + 15)1 + sinh(y- 15)1]

(
d-1 )

- d+ 1a - .J(a2 -1) .J[a - .J(a2 -1)] [sinh(y +15)/- sinh(y - 15)/].

3.2.3 Case a = 1.

FPoc {( 2d) .v(x) = (.J2)kN3 1+ 1+ d [cosh el cosh e(l- x) + smh el sinh e(l- x)

(
d-1 )- 2el sinh ex - cosh ex] + 2e212

d
+ 1+ 8 cosh ex

+ dd - 1ex[3 sinh ex - 2el cosh ex - sinh el cosh e(l- x) - cosh el sinh e(l- x)]
+1

- 8(; )(1 +b) (2 cosh el cosh ex - el~~ ~ sinh el cosh ex

+~ ~ ~ ex cosh el sinh ex )} .

M(x) = 4(V2)Po~ +b)N 3 {COSh el cosh e(l- x) +sinh el sinh e(l- x)

+ (2e 212 - 1) cosh ex - 2el sinh ex

+ex[3 sinh ex - 2el cosh ex - sinh el cosh e(l-x)- cosh el sinh e(l- x)]

+ 8(~)(1 +b)(el sinh el cosh ex -ex cosh el sinh ex)}.

F {2 cosh el sinh e(l- x) +2 sinh el cosh e(l- x)
4(1 +b)N3

- 2(e2[2 + 1) sinh ex +4el cosh ex

- ex[3 cosh ex - 2el sinh ex +sinh e[ sinh e(l- x)+ cosh el cosh e(l- x)J

- 8(i.)(1 +b)(el sinh el sinh ex - cosh el sinh ex - ex cosh el cosh ex)}-

(40)
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p(x) = ..j FPo {3[COSh eI cosh e(/-x)+sinh eI sinh e(l-x)-2el sinh ex]
2( 2)(1 +b)N3

+(2e 2
/
2 + 5) cosh ex + ex[3 sinh ex - 2e1 cosh ex

- sinh eI cosh e(/-x) -cosh eI sinh e(/-x)]

- 8(~) (1 + b)(2 cosh eI cosh ex - eI sinh eI cosh ex + ex cosh eI sinh ex)} .

R = (..j2)FPo(H +(..j2)Po H ) [1+ 2(..j2)Po(1+b)(H +~H)J-I
kN 3 1 k 3 kN 3 2 (..j2)k 4 .

The abbreviations denote the following

HI = 2 cosh eI-el sinh eI

H 3 = sinh eI - eI cosh eI

(
2d). d-l

H4 = 1+ 1+ d smh 2e1 + 2e1d+ 1.
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4. THE SOLUTION OF AN INFINITELY LONG BEAM

The solutions of an infinitely long beam corresponding to the loading cases of the
finite-beam treated above can of course be established in exactly the same way, Le. by
determining the integration constants on the basis of boundary conditions. It is also
possible to deduce the solutions direct from the corresponding expressions for the finite
beam, letting the length of beam 21 in these increase to infinity. The results given here
were derived in this way.

The first example, a uniformly distributed load q on the beam, is a simple one. On
physical grounds it is deduced that deflection v and foundation pressure p are constants

p = q.

The second example is of a beam loaded by a single force F. Cases a < 1, > 1 and = 1
are considered separately.

4.1 The case a < 1. Factor N 1 (32) is written in the form

N 1 = ~..j(1-a)e2~1(1+[e-2~'])
2

where the expression in square brackets has a common factor e- 2~1. First of all, it is observ
able from the formula of R in equations (38) that the value of concentrated foundation
pressure R tends to zero as the length of the beam (2/) grows without limit. From formulae
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(38) there are readily obtained

(

1+ 2ad 1- 2ad )
FPoc 1+d 1+d

v(x) = -k- e-
ax

J(1 +a) cos px+ J(1-a) sin px

( ) F -ax( 1 P 1 . )
M x = 4Po(l +b) e J(l +a) cos x- J(1-a) SIn px

Q(x) = -2(1:b)e-ax(cospx J(1~a2)Sinpx)

Fpo -ax( 1+2a 1-2a.)
p(x) = 2(1 +b) e J(1 +a) cos px+ J(1-a) SIn px

4.2 The case a > 1. There are derived, proceeding as above,

4.3 Finally, in case a = 1

(41)

(42)

FPoc -,x(1 2d d-1 )
v(x) = (J2)ke +l+d-d+l ex

M(x) = 4(J2)~(1 +b) e-'
X

(1-ex)

Q(x) = __F_ e - U (2_ex)
4(1 +b)

( ) FPo -'X(3 )
p x = 2(J2)(1 +b) e -ex. I

(43)
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5. CONCLUDING REMARKS

Results obtained by Wieghardt for an infinitely-rigid beam follow as limiting cases
from formulae (31) and (38).

As mentioned before, the corresponding Winkler-type foundation is arrived at if the
ratio k/2c is fixed and k --+ 00. In this case formulae (31), (33), (35), (38).... ,(43) yield the
results obtained previously [7-9] for Winkler-type foundation with the modulus of
foundation C = k/2c.
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Resume-II est presume que l'equation differentielle de la courbe de deflection de la poutre (6) dans laquelle
l'effet de cisaillement sur la courbure de la poutre a ete pris en consideration, est valide pour une poutre sur une
fondation eIastique. Selon Wieghardt, il y a relations presumees (4) avec la fonction du noyau (5) entre la deflection
et la pression de fondation. Sur base de cas assomptions l'equation differentielle de courbe de deflection (14) est
alors obtenue. Cette equation differentielle a ete employee en examinant Ie cas de chargement d'une poutre de
longueur finie. Les resultats correspondants pour une poutre infiniment longue sont egalement derives.

Zusammenfassung-Es wird vorausgesetzt, dass die Differentialgleichung der Balken-Durchbiegungskurve (6)
wonn der Einfluss der Schubspannung auf die Kriimmung beriicksichtigt wurde, fiir einen Balken auf elastischer
Unterlage giiltig ist. Nach Wieghardt wird ein Zusammenhang (4) mit der Kernfunktion (5) zwischen Durchbie
gung und Bettungsdruck vorausgesetzt. Diesen Voraussetzungen entsprechend wird dann die Differentialgleichung
der Durchbiegekurve (14) erhalten. Diese Gleichung wird angewandt zur Untersuchung zweier Belastungsfalle
eines Balkens mit endlicher Lange. Die entsprechenden Resultate fUr unendlich lange Balken werden auch
abgeleitet.

A6CTpaKT-ITpe,n;nonaraeTcll, 'ITO ,n;HclJcllepeHUHanbHoe ypaBHeHHe KPHBOIl. OTKnOHeHHlI 6anKH (6), B
KOTOpOM npHHHMaeTCli BO BHHMaHHe JclJclleKT c,n;BHra Ha KPHBH3HY 6anKH npaBHnbHO ,n;nl'l 6anKH Ha
JnaCTH'IHOM OCHOBaHHH. ITo Buexapmy (Wieghardt) npe,n;nonaraeTcli B3aHMOOTHoweHHe (4) KepH
c1JyHKUHH (5) Me)K,n;y OTKnOHeHHeM H ,n;aBneHHeM OCHOBaHHlI. Ha OCHOBaHHH JTHX npe,n;nonO)KeHHIl. nony'leHo
,n;HclJcllepeHUHanbHoe ypaBHeHHe KpHBOA OTKnOHeHHll (14). 3TO ,n;HclJcllepeHUHanbHoe ypaBHeHHe ynoTpe
6nl'leTCli npH Hccne,n;OBaHHH ,n;ByX HarpY30'lHbIX KaMep 6anKH KOHe'lHol!: ,n;nHHbI. BbIBe,n;eHbI TaK)Ke COOTBeT
CTByIOwHe pe3ynbTaTbI ,D;nll 6ecKOHe'lHO ,D;nHHHOl!: 6anKH.


