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A BEAM ON A WIEGHARDT-TYPE ELASTIC FOUNDATION

A. YLINEN and M. MIKKOLA

Department of Civil Engineering, Technical University, Helsinki, Finland

Abstract—It is assumed that the differential equation of the deflexion curve of the beam (6), in which the effect
of shear on the curvature of the beam has been taken into account, is valid for a beam on an elastic foundation.
According to Wieghardt, the relationship (4) with kernel function (5) is assumed between the deflexion and the
foundation pressure. On the basis of these assumptions, the differential equation of deflexion curve (14) is then
obtained. This differential equation has been employed in examination of two cases of loading a beam of finite
length. The corresponding results for an infinitely long beam are also derived.

NOTATION

A cross-sectional area of the beam
B,,B,,B;,B, integration constants
modulus of foundation according to equation (1)
modulus of elasticity
force
modulus of rigidity
moment of inertia of the cross-section
bending moment
1 N2, N3 abbreviations according to equations (32), (34) and (36)
shear force
R{,R, concentrated foundation pressures
abbreviations according to equation (13)
constant in the kernel function (5)
constant in the kernel function (5)
length of the beam
foundation pressure per unit length
continuous load per unit fength
deflexion of the beam and/or of the foundation
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y co-ordinates
o B.v,0,¢ notations according to equations (17), (19) and (21)
Bo abbreviation according to equation (13)
X coefficient in equation (6)

1. INTRODUCTION

CONSIDERATION is given here to a prismatic beam lying on an elastic isotropic foundation
(Fig. 1). Right-angled co-ordinate axes are chosen so that the x-axis coincides with the
axis of the unloaded beam. The positive direction of the deflexion v(x) is downwards, and
it is assumed that the deflexion of the axis of the beam equals the deflexion of the founda-
tion. The continuous loading which affects the upper surface of the beam per unit length is
denoted by g(x) and the pressure per unit length produced by the lower surface of the beam
on the foundation is denoted by p(x). It is assumed that the beam remains on the foundation
for its whole length and the horizontal forces which appear on the contacting surface of
the beam and the foundation are ignored. As a rule it is assumed, in accord with Winkler [1]
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and Zimmermann [2], that the foundation pressure is proportional, at every point, to the
deflexion at the same point, or that

p(x) = Co(x). (1)

The modulus of foundation C has the dimension of the modulus of elasticity. Regarding
the other relationship connecting the unknown functions p(x) and v(x), Winkler takes
into account the differential equation of the deflexion curve of the beam in the engineering
theory of bending

d*v(x)
dx*
where E is the modulus of elasticity of the material of the beam and I the moment of inertia
of the cross-section of the beam. From equations (1) and (2), follows the differential equa-

tion of the deflexion curve of the beam on an elastic foundation
d*v(x)
dx*

El

= q(x)—p(x) )

EI

+Co(x) = q(x). (3)

FiG. 1

This elementary theory by Winkler has been subjected to severe criticism by Wieghardt
[3] as regards both assumption (1) and the use of differential equation (2). He remarks
that hypothesis (1) is defective, not by reason of the proportionality between the pressure
and deflexion, which can be considered valid at small deflexions, but because the deflexion
at one point depends only upon the pressure at that point, and not at all upon the pressure
in the surroundings of the point. The inaccuracy of hypothesis (1) is most clearly revealed
at the ends of a finite beam, where according to equation (1) the foundation surface deflexion
becomes discontinuous, which is in contradiction to observations made.

Wieghardt replaces the hypothesis by a more rational one

0lx) = | K(x—Z)p(e) de )

where the integration has to be taken over the length of beam [l. As the kernel function
K(x— &), Wieghardt chooses the exponential function

K(x—¢g) = ce™Hx=¢ 5)

chiefly with a view to avoiding mathematical difficulties, and according to the tests made
by Foppl [4], it describes, approximately, the distribution of the pressure in the soil. The
constants ¢ and k depend upon the properties of the foundation.

Schiel {5] has pointed out that a mechanical model of the foundation, characterized
by the kernel function (5), is a heavy liquid with surface tension. He has examined a beam
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resting on the surface of such a liquid, and has also arrived at an exponential kernel func-
tion. From the surface tension, it follows that if the curve which represents a section of the
surface has a vertex, i.e. the slope of the curve has a point of discontinuity, a concentrated
pressure appears. Wieghardt states that the foundation pressure should be a continuous
function and cannot accept concentrated pressures. He implies that these irregularities are
caused by the inaccuracy of the differential equation (2) and endeavours to avoid the
contradiction, rejecting differential equation (2), and employing the Airy stress-function.

In the following it is accepted the appearance of concentrated foundation pressures
at points where the slope of the curve which represents the surface of the foundation has a
point of discontinuity, and it is considered that this property arises from the characteristic
of the foundation, determined by the kernel function (5).

We also regard the differential equation of the deflexion curve of the beam as valid,
but in a form such that the effect of the shear stresses on the curvature of the beam has
been taken into account [6-9]

2
v M, x4 (6)
dx ElI  GA dx
In equation (6), M and Q are, respectively, the bending moment and the shear force of the
beam, G is the modulus of rigidity of the material of the beam, 4 the area of the cross-
section of the beam, » a numerical coefficient the value of which depends on the form of
the cross-section and on Poisson’s ratio of the material of the beam.

Equation (4) includes the elementary hypothesis (1) as a special case, as is observable

on taking for the kernel function

1
Kx—&l) = zolx—=<l)

where § is the Dirac delta-function defined by equations 8(t) = 0,1 # 0,and [*® d(t)dt = 1.
With reference to the exponential kernel function (5), it can be shown that we must have

=C when k- o

2|~

if correspondence is to be achieved between the coefficients in assumptions (1) and (5).

2. DIFFERENTIAL EQUATION OF THE DEFLECTION CURVE
OF THE BEAM

It is supposed that the beam is subjected to a distributed load g(x) and a single concen-
trated force F (Fig. 2), and the origin of the co-ordinate axes is taken to be at the point of
application of the force.

From the expression of the curvature of the beam (6), it can be deduced that the slope
of the deflexion curve has the same points of discontinuity as shear force Q of the beam,
and consequently the points of application of concentrated loads. It can also be expected
that at the ends of the beam the deflexion curve has vertices, thus giving rise to concentrated
foundation pressures.
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~qx)
E q

Rl

s

Thus the expression of the deflexion curve of the beam in Fig. 2 can be presented in the
form

x Iz
v(x) = cf_l e”""“g’p(é)dé-kcj e M Ip(E)dE +cR e HxH

+ cRoe Ml eR, e =® (], < x < 1,) (7)
where R, R, and R, are the concentrated foundation pressures at the ends of the beam and
at the origin. Outside the beam, the deflexion curve of the surface is, say for x = I,

1
v(x) = cj e MEmOp(E)dE+cRy e ME TV 4 Ry e Tk 4+ cR, e KX, (8)
-1
If expression (7) is differentiated twice, then
dv

dx

x Iy
—ck[” &M Op(E)dE+ck[ e Ip(&) dE — kR, ¢ TH L)
-1 x

— ck(sign x)R e ~¥*1 4 ckR, g 72—

9)
and
d’v 2% —kx—0 2" k- 2 —k(x+11)
= —2ckp(x)+ck j—z e p(E) dE +ck L e p(E)dE+ck*R, e th
(10)
+ck?Rgye ¥ 4 ck?R, e *27x),
From equations (7) and (10), it is found that
1 d%v k
plx) = T3k a?+2—cv(x)-

(11)
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Then, from the well-known relations

dM d
S=0 = law-ph)

and the expression of curvature of the beam (6) is derived the differential equation for the
deflexion curve of the beam

x \d%v 1 xEIkz) d k xEl d%q
I+ 1+ o+ 0(x) = g— e ——2.
+2ckGA)dx4 2ck GA |dx? +2cv(x) 17GA dx? (12)
For the sake of brevity, the following notations are introduced
EIk? k %
b= _x_, d= Q, Bo=|—
2ckGA GA 8cEI(1+b) 13)
_ (1+d)/2ckEI(1+b)
"~ 2[k/2¢cEI(1+b)]*
on the basis of which equation (12) acquires the form
d*v ,d% " 1 x d%q
- — = - —. 14
ax ~ 4obo gzt 4P = I 1) " Ga b dx? (14)

Differential equation (14)is valid in all intervals where g and p are continuous functions
to their derivatives of the second-order. Its general solution is the sum of the solution of
the corresponding homogeneous differential equation and a particular solution.

First, there is formulated the solution of the homogeneous differential equation

d*v d%v
@—4aﬂ§a—g+ 4pdv(x) = 0. (15)
The solution assumes different forms, dependent upon whether the non-negative quantity a
is <l,>lor =1.

(1) When a < 1, then

v(x) = B, e** cos fx+ B, e**sin fx+ B; e ** cos fx+ B, ¢~ ** sin fx (16)
where o and § denote
a=Pof(L+a), B =Po/(1—a) (17)
(i) In the case a > 1, all the roots are real, and the solution
v(x) = B, e’ +B,e " +B,e**+B,e” ¥ (18)
is obtained.
Here, y and § denote the expressions
y = BolW2la+(@®=1)], & = Bo(/2)/[a—+/(a®*-1)]. (19)

(iii) In the last case, a = 1, the solution is

v(x) = B, e+ B,exe*+ Bye ™+ Byexe™ ™ (20)
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where ¢ denotes
£ = ﬂo\/z. (21)

According to the order of differential equation (15), there are four integration constants
in solutions (16), (18) and (20) to be determined on the basis of the boundary conditions
of the beam. Boundary conditions are specifications concerning the deflexion, the slope of
the deflexion curve, the bending moment or the shear force of the beam. For this pur-
pose, the general expressions of the bending moment and the shear force of the beam will
be introduced. From equation (6) it follows, on the application of notation (13) and the
expression of p(x) (11), that

d%v 5 xEI
= — — —— 2
M(x) EI(1 +b)dx2 + ETk*bo(x) i q(x) (22)
and differentiating (22)
dv ,,dv xEI dq

Further to the boundary conditions, certain conditions are needed for determination
of the concentrated foundation pressures. By utilizing formula (9), at the point of applica-
tion of the single load F, there is obtained

dU dU
] [dv R
[dx}x:w [de_o ckRq (24)

where [dv/dx], - ;¢ and [dv/dx],_ _, are the values of the slope when x tends to zero from
the right and from the left, respectively. On the other hand, from the expression of the
curvature of the beam (6) it is found that

dv dv X
[a:|x=+o_[a;_.’x=_o =a[Q(+O)*Q(—-O)] (25)

and, if the relations Q(+0)— Q(—0) = —(F—Rg)and b = x/2ckG A are taken into account,
then

b

Ry = ——
T 1+b

F. (26)

At the right-end of the beam, on application of the first derivative of expression (8) and

equation (9),
do — (_ig:| = —2ckR,
dx x=1;+0 dx x=10-0

and, on comparison of [dv/dx],,,+ , with deflection v(l,), according to formula (7), finally,

[@J +ku(l,) = 2ckR,. (27)

dx | =1,-0
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Similarly, at the left-end of the beam, there is obtained

[Sd—v:l —~kv(—1,) = -2ckR,. (28)
dx]e=-1,+0

3. SPECIAL CASES OF LOADING OF BEAMS OF FINITE LENGTH

Below, there are solved two simple loading cases of beams of finite length, viz. a
uniformly distributed load on the beam and a concentrated force at the middle of the
beam.

3.1 Uniformly distributed load
The origin of co-ordinates at the middle of the beam is taken (Fig. 3). By reason of
symmetry, only the positive branch of the beam is considered. First, the boundary con-

ditions which impose the integration constants and the concentrated foundation pressure
at the end of the beam will be established.

It follows from symmetry that the slope of the deflexion curve and the shear force are
to be zero at the origin. At the free-end of the beam, the bending moment disappears, and
the shear force has the value — R, the concentrated foundation pressure according to
condition (27). The desired conditions are accordingly

N\

dv
5.,
00)=0
M(=0 f (29)
Q0) = —R
[ﬂil + kv(l} = 2ckR
dx|,-, )
A particular solution of differential equation (14) is
2
o =74 (30)

in which g is the intensity of the uniformly distributed load. The solution of the homo-
geneous differential equation (15) has the form (16), (18) or (20), dependent upon the value
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of parameter a. The procedure of determination of the integration constants is routine,

hence its details are omitted, and only the final results are given.
The equations are valid for0 < x < L
3.1.1 Casea < 1.

2c 8RBoc(1 + b)jd— 1 . .
v(x) = kN, \d+ 1a[cosh al sinh ax sin f(I—x)
+sin Bl cos Bx sinh a(l — x)] — \/ (1 — a®)[cosh al cosh ax cos B(l— x)
—sin flsin fx cosh ol — x)]}.
R . . . .
M(x) = [cosh al sinh ax sin f(I— x)+sin Bl cos fx sinh ol — x)].

0i%1
o(x) = ——lzv—R{\/(l —a)[cosh al sinh ax cos B(I—x)+sin Bl sin fx sinh a(l — x)]
1

+ /(1 +a)[sin Bl cos Bx cosh a(l—x)—cosh al cosh ax sin B(I— x)]}.

px) =q— Rﬁo {\/(1 —a*)[cosh al cosh ax cos B(I— x)—sin Bl sin fx cosh a(l — x)]
- a[cosh ol sinh ax sin f(I— x)+ sin B cos fx sinh o(l —x)]}.
R = q/k{l+2ﬂ0(l+b [\/(1 %)(cosh 2al+cos 281) +

kN1
i" (1 +—)\/(1 —a) sinh 2al— bo ( 1—2%)\/(1 +a)sin 2/31}}.

Factor N, denotes

N, = /(1—a)sinh 2al+ /(1 +a) sin 2.

3.1.2 Case a > 1.

_2c 4RPBoc(1+b) d—1 )
o(x) = a4+ N, d+1a+\/(a —1)] cosh 6l cosh yx
+(d_ 1a—\/(az— 1)| cosh yl cosh 5x:|
d+1 ’ '
M(x) = (—cosh ! cosh yx + cosh 7yl cosh dx).

BoN.
(2R , o .
ox) = -T[\/[a+\/(a —1)] cosh 8l sinh yx — /[a — \/(a® — 1)] cosh y! sinh 8x]
2

2RB,
N,

plx) = gq— [(a+/(a*— 1)) cosh &l cosh yx — (a— /(a*> — 1)) cosh yl cosh dx].

(32)

r (33)
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/k{l ;2P0 +b)[2¢(a2 — 1) cosh yl cosh 81

kN,
+j;k(d:-1a+‘/(a )| la+/(a* = D](sinh (y+ 8 +sinh (y— 8)])
j20k d+1“ Vi ‘1)) \/[a‘\/(az“l)](SiIlh(v+5)l—sinh(y—6)l:|}_

Factor N, denotes
= J(a—1)sinh (y+8)l+/(a+ 1) sinh (y— d)l.

3.13 Casea = 1.
R
d—
v(x) = k q 4—(‘—/2)—?;@ [( 2 cosh el + iT 181 sinh &l | cosh ex
-1 )
~iT1 ex cosh &l sinh ex} .
R
M(x) = %2)—(81 sinh ¢l cosh ex — ex cosh &l sinh &x).
. 0+tvV3
2R . .
Ox) = —N—[(cosh ¢l — ¢l sinh gl sinh ex + ex cosh el cosh &l].
_ (\/ JRBo . .
p(x) = ——"2[(2 cosh el —¢l sinh ¢l) cosh ex +ex cosh &l sinh ex].

R= q/k{1+M[(¢2)(cosh 2el+1)

kN,
Bo ( sinh 2el+d—2el)]}
d+1

-1
P 2+-——
N, = sinh 2el+2¢l.

R d+1

7

Factor N, denotes

3.2 Concentrated force at the middle of the beam

J

625

(34)

(3%)

(36)

The origin of the co-ordinates is taken at the point of application of the load F, i.e. at
the middle of the beam (Fig. 4). By reason of symmetry, it follows that only the positive
part of the beam needs consideration. Again, there must first be found the appropriate
boundary conditions for determination of the integration constants, and concentrated
foundation pressures R, at the point of application of load F and R at the end of the beam.
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With the occurring symmetry taken into account and by making use of formula (25),

there are obtained
[gg} __ dF—Ry)
dx -0 2GA

: (37)
Q(0) = —5(F—Ro).
At the free end of the beam, it readily follows that
M(l) =
(37%)
o) = -R

Foundation pressures R, and R are defined on the basis of formulae (26) and (27) by

Ry=—F
0 1 +b (37”[
dv )

|:—:| +kv(l) = 2ckR
dx .-,

The integration constants B, , B,, B; and B, in expressions (16), (18) or (20) will be deter-
mined from conditions (37) and (37”). If there is taken into account the value of
R, = Fb/(1+b), these constants are still dependent upon foundation pressure R at the
end of the beam. The value of R follows from condition (37”). On proceeding in this way,
and omitting the uninteresting computations, the following results are obtained.

3.2.1 Case a < 1.
Sl

F
v(x) = Boc {(1 + 2ad [cosh al cosh a(l — x)+ sinh al sinh a(! — x)] cos fx
2ad .
1— 54 (cosh al sinh ol — x)+ sinh ol cosh (! — x)] sin fx

kN, l+a

+d
1
+(1 lzj—(fi)\/ +a [cos Bl cos (I — x)—sin Bl sin B(I —x)] cosh ax
(1 +1—id~ [cos Bl sin B(I— x)+sin Bl cos B(I — x)] sinh ox
2 2a? 4a
_ _ e .

+\/(1—a2)(1 i5d cosh ax cos fx H_dsm ox sin fix

R d—1 | . 5
+8 T (1+b) d+las1nhoclsmﬁl—\/(l~a Ycosh al cos Bl | coshax cos fx

(Z 71 cosh al cospl+ /(1 —a?)sinh ol sin Bl

sinh ax sin ﬁx]}



Mix) = F { 1—a
) = BTN, \/(l+a

okx) =

plx) = 2(1+b)N {““"\/

R
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_2F ﬂo(Hl @Ha)[l 2B4(1 +b)

[cosh al cosh afl — x) +sinh al sinh a(l — x)] cos Bx

— [cosh al sinh a(l — x)+ sinh al cosh ol — x)] sin fx
- \/ (;i—;)[cos Bl cos Bl — x)—sin Bl sin B(I— x)] cosh ax
—{cos Bl sin B(I—x)+sin Bl cos B(I—x)] sinh ox

2
+ :/Til-aT) cosh ax cos fx 42 sinh ax sin fx

+ 8(%)(1 + b)[cosh al sin (I — x) sinh ax + sin Bl sinh a(l — x) cos ﬁx]}.

F
2(1+b

+ /(1 — a)[cosh al sinh a(l — x)+sinh al cosh (I — x)] cos fx

{ Ja+ [cosh ol cosh aff — x) + sinh al sinh a(/— x)] sin Bx

——a:‘-)[cos Bl cos B(l—x)~sin Bl sin Bl — x)] sinh ax

T

+ /(1 +a)[cos Bl sin (I — x)+sin Bl cos B —x)} cosh ax

cosh ax sin fix

1 . 1
_m sinh ax cos fx —m

+4(1—1:) (1+b)[(/(1— a) cosh al cos Bl — /(1 +a) sinh al sin Bl) sinh ax cos fx

+(/(1+a) cosh al cos Bl +./(1—a) sinh ol sin BI) cosh ax sin ﬂx]}.

)[cosh ol cosh afl — x) + sinh al sinh ol — x)] cos Bx

+(1—2a)[cosh al sinh ol — x) + sinh al cosh afl — x)] sin Bx

+(1-2a )\/

—(L+2a)[cos Bl sin B(I— x)+sin Bl cos B(I - x)] sinh ax

{cos Bl cos B(l— x)—sin Bl sin B(I— x)] cosh ax

2
+——~———- cosh ax cos fx
Ja-

a?)
+s(§

—(acosh ol cos Bl ++/(1 —a?) sinh al sin Bl) sinh ax sin Bx]}

H, +%9H4ﬂ— .

(1+b)[(a sinh al sin fI— /(1 —a?) cosh al cos fl) cosh ax cos fx

kN, k kN,

627
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The abbreviations are
H, = /(1—a?) cosh al cos Bl —a sinh al sin Bl.

H, = /(1—a%)(cosh 2al+cos 281).
= /(1—a)sinh ol cos pl— /(1 +a) cosh al sin .

2ad ) 2ad .
H, (1+—:‘§)\/(l—a)smh 20~ l—m)\/(lJra)stBl.

322 Casea > 1.

v(x) = Fhoc {(d+1 +./(@*~ H—( 2a—1 _ 2a+l la+ /(a*—1)] cosh yx

Jla=1) Ja+1)

(V2kN

2a—1 2a+1
’ Jm-nﬂ/&m) Vla=y/(a®~ ) cosh 5l cosh y(1 ~x)
_ 2a—1 2a+1 2 VR i ~
\/(a~1)+\/(a+l)) (/la—/(a*~1)])? sinh 8! sinh y(I x)]

i:l e 2a 2a+1 -
+ 1 N(C I)H: {\/(a i \/(a+1) JVIa—/(a*—1)] cosh 5x
+ 2a—1 2a+l Jla++/(a*—1)] cosh yl cosh §(I— x)

Ja=1)" Ja +1)}
_( 2a—1 2a+1 )
@a—1) Ja+1

+4(\/2){ )(H—b)[ (%—a+\/(a -1)) cosh 8! cosh yx

(Z+1 —J@*-1 ) cosh yl cosh ExJ}

F 2a— 2a+1
AJDBoA1 TN, H\/(a— DVt n) ViatJla®=]coshyx
2a—1 N 2a+1
Jla=1) " Ja+1)
2a 1 2a+1

V=1 \/ (a+1)

|
2a+1 )
|

(VIa++/(a®=1)])* sin yI sinh &(1 ——x)]]

M(x) =

+ )\/[a— (@ = 1)] cosh 51 cosh (I —x)

(VIa—+/(a*—1)])* sinh 8! sinh y(I—x)

—/(@*—1)] cosh éx

B \/(a 1) \/(a+1)
( 2a—1 2a+1
a 1) \/( +1)
2a—1 2a+1
(\/(a D \/( +1)

+ 4(\/2)(1—5)(1 + b)(—cosh 6l cosh yx + cosh pl cosh 5x)] .

JiIa+/(a* —1)] cosh yI cosh §(I—x)

(/[a+/(a*~ D)}y’ sinh yl sinh 8(/— x)

\ (39)
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F 2a-—1 2a+1 .
R [ s ) o Vs

Qx) =

2a-—1 2a+1
Ja—1) " Jlat D

i
( -1 2a+1
|
7

cosh & sinh y({—x)

Ja=D \/( +1))[a—-\/(az—l)]sinhélcoshy(l-——x)

2a-1 2a+1

J6a-1) \/(a+ 1)
2a-1 2a+1

\/ —1) (a+1)
__( 2a~1 _ 2a+1
\/(a—l) \/(a+1)

+4(\/2)(§) (1+b)(/[a++/(a® —1)] cosh &l sinh yx

e

a—./(a®>—1)]sinh éx

+ cosh yl sinh §(/— x)

[{a+\/(a® — 1)] sinh yl cosh (I — x)

—J[a—/(@® — )] cosh yl sinh 5x) | .

plx) = FB, {_ 2g-1 _ 2a+1
2AJ2U+bN, | {a-1) Ja+D)
2a—1 2a+1
(Jta-lm( 1)
- \/23: D \/Z(a—:il))\/{ — J/{@*—1)] sinh &l sinh y(I—x)
2a—1  2a+1
Ja=1" Ja+1)
2a—1 _ 2a+1 ‘
Ja—1 Ja+1)
2a—1 2a+1

V@D Ve 1))*/ [a+/(a* = 1)} sinh 31 sinh 6 ~)

+4(\/2) (g) (1+b)[—(a+/(a®— 1)) cosh 8l cosh yx

) (/[a+/(@* = 1)])? cosh yx

)\/[a +/(a* ~1)] cosh &l cosh y(I— x)

(/[a—/(@® —1)])? cosh éx

Jla—/(a*—=1)] cosh yl cosh §(I—x)

+(a—+/(a*— 1)) cosh yI cosh 5x}}.

R=-€Eﬂ‘~/(~a2——((\/2)H,+2ﬁ° )[1+2B°(1+b)(H2 B m)] :

2kN, kN, 2k

Here the abbreviations are

H1="’"

( 2a—1 2a+1

\/(a— 1)_ \/(a n 1))\/[a+\/(az ~ 1)} cosh yl

629
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2a—1 2a+1

)\/[a —J/(@*—1)] cosh &l

H, = 2./(a*— 1) cosh yl cosh &1

2a—1 2a+1 ) .
H,= - a+ —1)] sinh y!
3 (\/(a__ 1) \/ [ \/ ] bé
2a—1 2a+1 2 )
+ + a—./(a*—1)]sinh &/
(J(a_ 5 T 1)) la= (@~ 1)
d— 2 . .
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323 Casea=1.
F 2d
W) = 5 2/)3 ;;3 {(1 e d)[cosh el cosh &(I~ x) +sinh ¢l sinh &(I — x)
. 241
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d+1
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+&x[3 sinh ex — 2¢l cosh ex —sinh &l cosh &(! — x) — cosh &l sinh &(! — x)]
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p(x) = mi%ﬁg{ﬁcosh &l cosh &(l — x) +sinh &l sinh &(l — x) —2¢l sinh £x)

+(2¢21% 4 5) cosh ex +¢x[3 sinh ex — 2¢l cosh &x

—sinh &l cosh &(I — x) — cosh &l sinh &(1— x)]
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R .
f) (1+b)(2 cosh &l cosh ex — &l sinh &l cosh ex + ex cosh &l sinh sx)} .

_ (2FB, (v2)Bo 2(\/2)B0(1+b)( Bo ) -
R=1 (H1+ : H3)[1+ IN. H2+(\/2)kH4 .

The abbreviations denote the following
H, = 2 cosh ¢gl—e¢lsinh &l
H, = 2 coshZel

H,

sinh &l — &l cosh &l

sinh 2¢l + 2¢l d—:—l
d+

H,= |1+ 2
4 1+d T

4. THE SOLUTION OF AN INFINITELY LONG BEAM

The solutions of an infinitely long beam corresponding to the loading cases of the
finite-beam treated above can of course be established in exactly the same way, i.e. by
determining the integration constants on the basis of boundary conditions. It is also
possible to deduce the solutions direct from the corresponding expressions for the finite
beam, letting the length of beam 2/ in these increase to infinity. The results given here
were derived in this way.

The first example, a uniformly distributed load g on the beam, is a simple one. On
physical grounds it is deduced that deflection v and foundation pressure p are constants

2¢
v =—g¢, = q.
kq P =4

The second example is of a beam loaded by a single force F. Casesa < 1, > land = 1
are considered separately.

4.1 The case a < 1. Factor N, (32)is written in the form

1
N, = 5\/(1 —a)e*(1+[e" )
where the expression in square brackets has a common factor e~ 2%, First of all, it is observ-
able from the formula of R in equations (38) that the value of concentrated foundation
pressure R tends to zero as the length of the beam (2[) grows without limit. From formulae
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(38) there are readily obtained

2ad 2ad
M) =4ﬁo(f+b)em(¢(11+ o5 =iy S B
0(x) = —2—(1%—1)—)e—“’=(cos ﬁx—\/—(—a;a—z) sin fx
plx) = 2(117/101;) _u(\/l(ﬁa 0s px +\/(1v sin fx

4.2 The case a > 1. There are derived, proceeding as above,
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(2a—1 2a+1 _6x]
————e

Ja-1"
F -1 2a+1 .
00 = 7 A +b)[J[a J@—=1) \/(a 3 \/(a+1)
2a—1 2a+1 4} _,,
—Jla++/(@*—1)] \/(a—l)_\/(a+1))e "]

FpB, [( 2a—1 | 2a+1 ) . (2a—1 _ 2a+1 _(,x]
o)\ Ja—1 Jard® \Ja-1) Ja+1)®

-—yx

—[a++/(a*—1)]

px) =

4.3 Finally,in casea = 1

FBo¢ _|j, 24 _d—1,
o) = (1+1+d d+1° )
F —EX, —
M(X)zé—“\/z)—ﬁo(lt{-—bje (1 8X)
Qx) = —4(1+b)e“"(2—8x) [
__ FBo ez
p(x)—Z(\/2)(l+b)e (3—ex).

, @)

(43)
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5. CONCLUDING REMARKS

Results obtained by Wieghardt for an infinitely-rigid beam follow as limiting cases
from formulae (31) and (38).

As mentioned before, the corresponding Winkler-type foundation is arrived at if the
ratio k/2c is fixed and k — o0. In this case formulae (31), (33), (35), (38)....,(43) yield the
results obtained previously [7-9] for Winkler-type foundation with the modulus of
foundation C = k/2c.
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Résumé—1l est présumé que I’équation differentielle de la courbe de déflection de la poutre (6) dans laquelle
I’effet de cisaillement sur la courbure de la poutre a été pris en considération, est valide pour une poutre sur une
fondation élastique. Selon Wieghardt, il y a relations présumées (4) avec la fonction du noyau (5) entre la déflection
et la pression de fondation. Sur base de cas assomptions ’équation differentielle de courbe de déflection (14) est
alors obtenue. Cette équation differentielle a été employée en examinant le cas de chargement d’une poutre de
longueur finie. Les résultats correspondants pour une poutre infiniment longue sont également dérivés.

Zusammenfassung—Es wird vorausgesetzt, dass die Differentialgleichung der Balken-Durchbiegungskurve (6)
worin der Einfluss der Schubspannung auf die K riimmung beriicksichtigt wurde, fiir einen Balken auf elastischer
Unterlage giiltig ist. Nach Wieghardt wird ein Zusammenhang (4) mit der Kernfunktion (5) zwischen Durchbie-
gung und Bettungsdruck vorausgesetzt. Diesen Voraussetzungen entsprechend wird dann die Differentialgleichung
der Durchbiegekurve (14) erhalten. Diese Gleichung wird angewandt zur Untersuchung zweier Belastungsfilie
eines Balkens mit endlicher Lénge. Die entsprechenden Resultate fiir unendlich lange Balken werden auch
abgeleitet.

A6crpakr—IIpennonaraercs, yro AuddepeHIMANBEHOE ypaBHEHME KDHBOH OTKIOHEHHa Oanxu (6), B
KOTOpOM HNPHHHUMAETCA BO BHuMaHME 3((QexT caBura Ha KPUBH3HY OajikMm MPaBHIIBHO ANA Oalkd Ha
3NacTHYHOM OcCHOoBaHMu. [lo Buexapmy (Wieghardt) npeanonaraercs m3amMooTHOIIEHHE (4) KepH-
bynkuuu (5) Mexny OTKIOHEHHEM M JaBICHHEM OCHOBAHMS. Ha OCHOBaHWH 3THX NIPEAIIONIOKEHUH IOy IeHO
muddepeHnanbioe ypaBHeHHe KpuBol oTkioHeHus (14). Oto auddepeHumansHoe ypasHeHHe ynoTpe-
GnseTcaA NpH MCCNIENOBAHKH ABYX HATPY304HBIX KaMep 6ajki KOHEMHOMK NTHHLI. BoIBeAEHBI TAKXE COOTBET-
CTBYIOILIHE Pe3yNbTaThl N1 GECKOHEYHO MIHHHON Gankw.



